9000001

State of Ohio Environmental Protection Agency

STREET ADDRESS:

Lazarus Government Center 122 S. Front Street Columbus, Ohio 43215

TELE: (614) 644-3020 FAX: (614) 644-3184 www.epa.state.oh.us.

MAILING ADDRESS.

P.O. Box 1049 Columbus. OH 43216-1049

EPA Region 5 Records Ctr.

August 12, 2005

Mr. Jason El-Zein, Chief Response Section One U.S. EPA Region V 9311 Groh Road Grosselle, Michigan 48138

Dear Mr. El-Zein:

Ohio EPA requests U.S. EPA's assistance for an emergency removal of hazardous waste and other regulated materials from the Pine View Plating (PVP) facility at 4529 New 74/5 5 6 Cumberland Road NE, Mineral City, Tuscarawas County, Ohio. Pine View Plating was an industrial chrome plating facility. On July 17, 2005, a fire destroyed the facility.

Approximately 3000 gallons of waste water from fighting the fire and pickling liquid were generated. This hazardous waste was generated when fire officials pumped out a sump beneath one of the plating process tanks. The waste is currently stored in 2 totes. Another sump under a second process tank contains hazardous waste plating sludge. This sump is in bad condition as a result of the fire. A small pond adjacent to the facility and a makeshift sump between the facility and the pond also received waste water. Soil sampling efforts by Ohio EPA, has confirmed that soil adjacent to the burned building is contaminated with arsenic, barium, chromium, lead and selenium. Sampling of the ash that was generated demonstrates that the ash is characteristically hazardous for chromium. Sampling data is attached. The business was not insured and the owner is concerned that he may have to file for bankruptcy.

Further contamination to the surrounding land and pond is likely to occur due to rain events unless material on site is removed as soon as possible. I have attached a "Time Critical Removal Action Referral Package" which provides detailed information about the site and the hazards that exist.

> Bob Taft, Governor Bruce Johnson, Lieutenant Governor Joseph P Koncelik, Director

Mr. Jason El-Zein, Chief Page 2

I hereby request that U.S. EPA conduct an action that includes the removal, as soon as possible, of all hazardous waste and other materials required to be removed from the facility under Ohio's Cessation of Regulated Operations regulations. If you have any questions, please call Isaac Wilder of my staff at (614) 644-3067.

Sincerely,

Harry E. Sarvis, Manager

Compliance Assurance Section

Division of Hazardous Waste Management

Attachments

cc w/o attachments Melody Stewart\Jim Michnowicz, DHWM, SEDO

Pine View Plating 106 letter wpd

OHIO EPA TIME-CRITICAL REMOVAL ACTION REFERRAL PACKAGE

А.	Site Name	Pine View Plating
B.	Location:	4529 New Cumberland Road NE, Mineral City, Ohio 44656

C. Owner(s)/Operator(s):

1.

Ron Shaw 330 364-2308

Site Location and Responsible Party Information

D. Brief description of steps taken to compel responsible party(ies) to conduct site remediation: On 7/17/05, a fire destroyed the Pine View Plating facility in Mineral City, Ohio. Approximately 3000 gallons of fire water and pickling liquid, currently stored in 2 totes, were generated. This hazardous waste was generated when fire officials pumped out a sump beneath one of the plating process tanks. Another sump under a second process tank contains hazardous waste plating sludge. A small pond adjacent to the facility and a make-shift sump between the facility and the pond also received fire water. Soil contaminated with arsenic, barium, chromium, lead and selenium has been confirmed by soil sampling efforts by Ohio EPA. Further contamination to the surrounding land and pond is likely to occur due to rain events. Sampling of the ash that was generated demonstrates that the ash is characteristically hazardous for chromium. The business was not insured and the owner is concerned that he may have to file for bankruptcy.

2. Site Description and Background Information

A. Description of past or present operations and how wastes were generated:

When the facility was in operation, Pine View Plating was an industrial chrome plater. The facility repaired and replated mostly hydraulic parts such as telescopic cylinders. The hydraulic parts were first cleaned/striped using hydrochloric acid, rinsed, machined for the correct size and then chrome plated. Metal grindings were generated as well as sludge from the plating operation.

B. Site Characteristics

Site layout (size, number of buildings, topography, etc.): All facility operations were located in a 50 x20 foot pole barn.

Quantity and type of wastes and/or hazardous substances: Fire water/plating fluids collected in two 1,500 gallon totes, ash in the building, sludge (approximately 18 inches) stored in the sump beneath the plating tank, one 55-gallon container of plating sludge and the contaminated soil remain at the facility.

Analytical data or other documentation on chemical characterization of wastes present (attach analytical): See attached analytical data.

Condition of containers: The totes are closed and in good condition. The 55 gallon container of plating sludge is in poor condition due to the fire. The plating sludge beneath the plating tank, ash and contaminated soil are not containerized. Rain events will likely spread the ash and increase soil contamination, possibly reaching the pond.

Proximity of population and population density: The facility is located directly behind the owners residence and approximately 100 feet off the road. This area is a farming community and is not densely populated.

3.	Threats	to Public	Health and	the	Environment
J.	11116463	LU I UDIIU	IICUIUI UIIG		

- A. Description of potential exposure to humans, animals or the food chain from hazardous substances or contaminants: The pond is within 50 feet of the facility. Site access is not restricted in anyway.
- B. Actual or potential for release present: Soil contamination has been confirmed by sampling results.
- C. Threat of fire or explosion: None.

4. Assessment of Environmental Hazards and Proposed Response Actions

A. Description of hazards (real or potential) posed by site and what actions should be undertaken to reduce or eliminate hazard: Further contamination to the soil and the pond is likely to occur with rain events. Ash should be containerized and the areas where soil contamination has been confirmed should be remediated. The fire water/plating solution and the 55 gallon container of plating sludge should be shipped off-site for proper disposal as soon as possible. The plating sludge in the sump beneath the plating tank should be containered and manifested off-site.

5. Chronology of Events

- 1. July 17, 2005 Fire at the Pine View Plating Facility.
- 2. July 18, 2005 Ohio EPA conducts site visit.
- 3. July 21, 2005 Ohio EPA conducts sampling activities
- 4. August 1, 2005 Ohio EPA receives sampling results.

δ.	Index of Documents	
	1. July 18, 2005 Photographs from Site Visit	
	2. July 21, 2005 - Photographs taken during Ohio EPA sampling event	
	3. Sampling Results	
	4	_
	5	
7.	Extenuating or Mitigating Circumstances	
	The business was not insured and the facility owner is concerned that he may have to fill bankruptcy.	<u>e for</u>
8.	Contacts	
	District Office: Melody Stewart - DHWM/SEDO	
	Central Office:	
9.	Signatures	
	Signed: Date:	
	Approved: Date:	

OHIO EPA TIME-CRITICAL REMOVAL ACTION REFERRAL PACKAGE

1.	Site L	ocation and Nesponsible Faity information
	A.	Site Name: Pine View Plating

B. Location: 4529 New Cumberland Road NE, Mineral City, Ohio 44656

C. Owner(s)/Operator(s):

Ron Shaw 330 364-2308

anation and Posnonsible Party Information

D. Brief description of steps taken to compel responsible party(ies) to conduct site remediation: On 7/17/05, a fire destroyed the Pine View Plating facility in Mineral City, Ohio. Approximately 3000 gallons of fire water and pickling liquid, currently stored in 2 totes, were generated. This hazardous waste was generated when fire officials pumped out a sump beneath one of the plating process tanks. Another sump under a second process tank contains hazardous waste plating sludge. A small pond adjacent to the facility and a make-shift sump between the facility and the pond also received fire water. Soil contaminated with arsenic, barium, chromium, lead and selenium has been confirmed by soil sampling efforts by Ohio EPA. Further contamination to the surrounding land and pond is likely to occur due to rain events. Sampling of the ash that was generated demonstrates that the ash is characteristically hazardous for chromium. The business was not insured and the owner is concerned that he may have to file for bankruptcy.

2. Site Description and Background Information

A. Description of past or present operations and how wastes were generated:

When the facility was in operation, Pine View Plating was an industrial chrome plater. The facility repaired and replated mostly hydraulic parts such as telescopic cylinders. The hydraulic parts were first cleaned/striped using hydrochloric acid, rinsed, machined for the correct size and then chrome plated. Metal grindings were generated as well as sludge from the plating operation.

B. Site Characteristics

Site layout (size, number of buildings, topography, etc.): All facility operations were located in a 50 x20 foot pole barn.

Quantity and type of wastes and/or hazardous substances: Fire water/plating fluids collected in two 1,500 gallon totes, ash in the building, sludge (approximately 18 inches) stored in the sump beneath the plating tank, one 55-gallon container of plating sludge and the contaminated soil remain at the facility.

Analytical data or other documentation on chemical characterization of wastes present (attach analytical): See attached analytical data.

Condition of containers: The totes are closed and in good condition. The 55 gallon container of plating sludge is in poor condition due to the fire. The plating sludge beneath the plating tank, ash and contaminated soil are not containerized. Rain events will likely spread the ash and increase soil contamination, possibly reaching the pond.

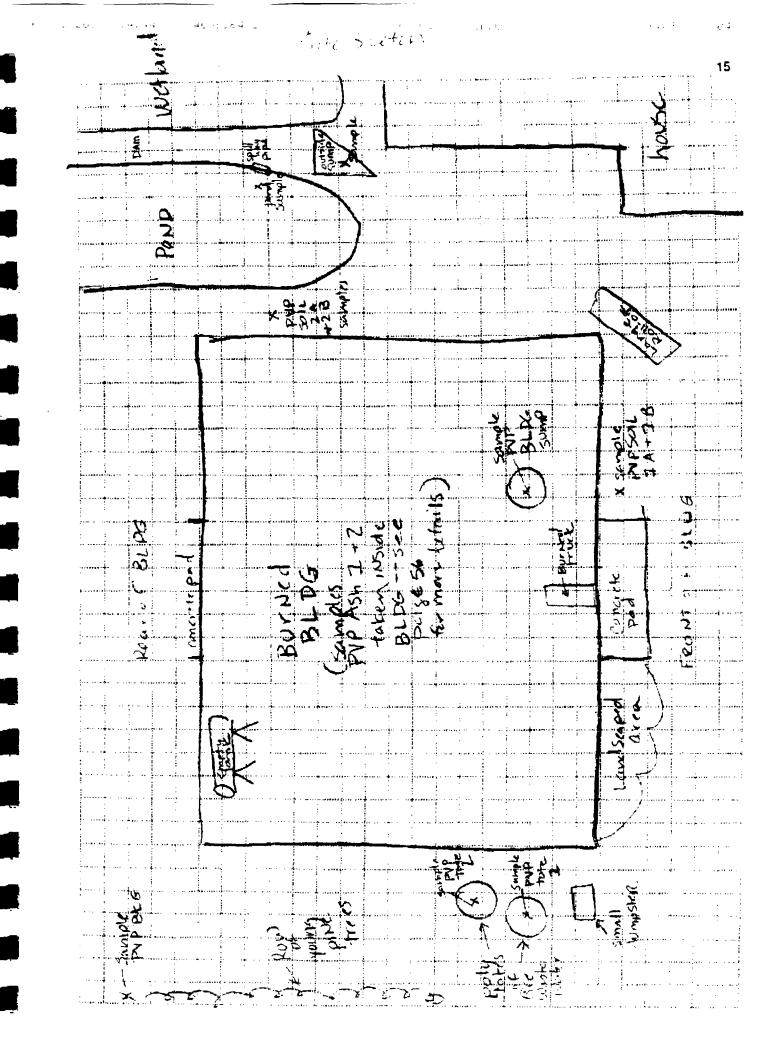
Proximity of population and population density: The facility is located directly behind the owners residence and approximately 100 feet off the road. This area is a farming community and is not densely populated.

3.	Threats to	Public	Health and the	Environment
J.	IIII Cato to	I UDIIC	i icaiui aliu ulc	WIIAII OIIIIICIII

- A. Description of potential exposure to humans, animals or the food chain from hazardous substances or contaminants: The pond is within 50 feet of the facility. Site access is not restricted in anyway.
- B. Actual or potential for release present: Soil contamination has been confirmed by sampling results.
- C. Threat of fire or explosion: None.

4. Assessment of Environmental Hazards and Proposed Response Actions

A. Description of hazards (real or potential) posed by site and what actions should be undertaken to reduce or eliminate hazard: Further contamination to the soil and the pond is likely to occur with rain events. Ash should be containerized and the areas where soil contamination has been confirmed should be remediated. The fire water/plating solution and the 55 gallon container of plating sludge should be shipped off-site for proper disposal as soon as possible. The plating sludge in the sump beneath the plating tank should be containered and manifested off-site.


5. Chronology of Events

- 1. July 17, 2005 Fire at the Pine View Plating Facility.
- 2. July 18, 2005 Ohio EPA conducts site visit.
- 3. July 21, 2005 Ohio EPA conducts sampling activities
- 4. August 1, 2005 Ohio EPA receives sampling results.

6.	Index of Documents
	1. July 18, 2005 Photographs from Site Visit
	2. July 21, 2005 - Photographs taken during Ohio EPA sampling event
	3. Sampling Results
	4
	5
7.	Extenuating or Mitigating Circumstances
	The business was not insured and the facility owner is concerned that he may have to file for bankruptcy.
8.	Contacts
	District Office: Melody Stewart - DHWM/SEDO
	Central Office:
9.	Signatures
	Signed:
	Approved: Date:

							1							
Page: of	GEL Chain of C	Laborat Custody				-			st		6954 (Cincin Phone:		89-2001	•
Client Name: Ohio EPA - SEI	Phone #	740) 380	-5288			Sam	ple A	nalysis F	Requested	(Fil.	in the	number	of conta	iners for each test)
Project/Site Name: Pine View Pla	ting FAX N/7	40) 385-	6490		d this	Ders								< Prescrvative Type (6)
Address: Route 1 Box 270	Mineral City	OH 4		consid	le be lered:	Coorts	Metals	ete						Comments
Collected by: Scott Bergreen Send R	esults To: Scott Be	rgreen			flad		Ĭ	X			1 1			Note: extra sample is
Sample ID	Date Collected Time Collected (military) (hhmm)) A Filtere	id Sample ad ⁽⁷⁾ Matrix ⁽⁴⁾	Radiosctive	TSCA Repu	Total nun	Telp	Total						required for sample specific QC
PVP Tote 1	7-21-05 12:55	6	MM			1	X						ver	e No Acid.
PVP Tote 2	7-21-05 13:05		WW			1	X			4	EAM	19>	Tw	**
PVP Pond	7-21-05 13:15		SW					X		-	Ore	erv	pres	rve
PVP Outside Sump	7-21-05 13:20		WW				X	Δ	1 1	1	PI	654	3]	1 481
PVP Soil IA	7-21-05 13:34	 	So			1	X						4	edite Augy
PVP Soil IB	7-21-05 13:40	G	So			1	I	X		100	01	ase	Y.	ear H Aro.
PVP Soil 2A	7-21-05 13:43		So				X			9 -	T	115	c4350	ζ
PVP Soil 2B	7-21-05 13:46		SO			1		X			147	1/2		
PVP Soil Bkg.	7-21-05 13:58		So					X				1		
PVP Ash 1	7-21-05 14:16	T	SS			,	X		1					
TAT Requested: Normal: Rush: V Specify:	(Subject to Surcharge) Fax		'a /	No		Cin.	cle De	liverable.	Cof A	OC Su	mmary	/ Level	11 / 14	evel 2 / Level 3 / Level 4
Remarks: Are there any known hazards applicable			vazards		P. 7	rot	e 1	and	PV	P To	tes	MA	y ha	ve high chromium
	stody Signatures								ample D	elivery	Details	/ Labor	atory R	tecelpt
Relimpsished By (Signed) Date Time	Received by (signed)	Date Tin	/	_	GEL	PM:								
1 x 64 Bugan 7/23/05 09:15 Steve / Ann 7/23/05 14!							Method of Shipment: Date Shipped:							
2	22				Airbil	l #:								
3 1.) Chartof Custody Number • Client Determined	3				Airbil	1 <i>≢</i> :								
2.) QCondes: N = Normal Sample, TB = Trip Blank, FD = Field Duptican				e Duplic	cate Sur	πρle, G	= Grab,	С = Сопра	elte				-	For Lab Receiving Use Only
3.) Flee Herred: For liquid matrices, indicate with a - Y - for yes the samp 4.) Maga Codes: DW = Drinking Water, GW = Groundwater, SW = Surfa				- Slada	p. 55 =	Solid W	aste, O	= Qil, F = F	Liter, P = Wi	ipe, U = Uri	ne, F = Fe	cal, N = N	-	Custody Seal Intact? YES NO
5.) Sumple Analysis Requested: Analytical method requested (i.e. \$2608, 6	019B/7470A) and muriber of container	s provided for each (i e. 82609 - 3,	601 00 /7	7470A -	I).								Cooler Temp: C
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = So	unum mydraxide, 8A = Sulfune Acid, A	A = Alicorosc Acid, 1	na = 11(1 216), (p1 = 20	men 1		c, # 🗪	Property and a	- U - C	HIM ING				

	1								1													
Page:		GEL L									est				6954 Cincu	Come nad,			-	<u> </u>		
PO Number:						,								- 1		•	89-22					
Client Name: Ohio EPA-SEDO		Phone *	746)3	<u> 80-5</u>	288			Sac	nple A	nalysi	s Req	ueste	d (5)	Fill i	in the	numi	ber of	contai	ners f	or each	iest)	
Client Name: Ohio EPA-SEDO Project/Site Name: Pine View Platin	vg.	Fax #(74	10)3	85- 6	490		id this ple be												<-	- Preserv	ative Ty	pe (6)
Address: Route 1 Box 270 M	ineral C	ity o	Н	446	56		dered:	contra	tak	tal										Con	ments	
Address: Route 1 Box 270 M Collected by: Scott Bergreen Send Res	ults To: Scot	t Be	rgree		_		3	<u>\$</u>	Met	Me										lote: ex	tra sam	ple is
Sample ID	Date Collected (Emb-dd-yy)	Time Collected (Military) (bhases)	OC Code		Sample	Radbaactive	SCA Reput	Fotal numi	TCLP	Total			į						ľ	_	ific QC	-
PVP Ash 2	7-21-05	14:23	c		SS	Ī		Ī	X											1	AT	
PVP Building Sump	7-21-05	1	1		MM			1	X								e	~P4		wid	<u> </u>	
													*	P	124	32		,,55	1	10	5.	
														7	. 4	0	45	,,55	1	20/0		
				 	 						一		7		7 7	١.,	ie	0				
		 		\vdash	 	t	t				一	\neg	+		K	19						
	+	_		-									-			T	1					
	 			+-	 	\vdash	\vdash						-+				†		 			
	+			 	-	╁╌	┼	 	-				-+	\dashv		 	\vdash		 			
	1	 	 	+-	 	+		 	-		+		\dashv			\vdash	\top		†			
TAT Requested: Normal: Rush: Specify:	(Subject to Surch	Dar Pa	l autos	Yes		N	io		ioria D			of A		. Sum	marv		evel 1		evel 2	/ Leve	13 / L	evel 4
TAT Requested: Normal: Rush: Specify: Remarks: Are there any known hazards applicable																						
						Cor	ten	t.	., ,	1	•	7)		,,,,,		··J	_		miun		
	ody Signatures										San	nple l	Delive	ry D	etail	s/Le	bora	tory R	tecelp	t		
Relinquished By (Signod) Date Time	Received by (si	grood) /	Date	Time	bc		GEI	PM:														
Sut Beynen 7/22/05 09:15 1 John John 192/05						-	Meth	od of S	Shipme	ot:					Date	Ship	ped:					
2	2						Airbi	11 #:														
3	3	,					Alrbi	11#:														
1.) Chair of Custody Number - Client Determined	70 Caulamer Black	NG - Marria C	niho Com	-L M80 -	Maraia Pai	iba Dam	lanta St	la C	` Conb	Cac									For L	ab Recei	ving Use	e Only
 QC. des: N = Normal Sample, TB = Trip Blank, FD = Field Daplicate, i Field Blank = Y - for year the sample 					menta sbi	er vab	JI	mapac, G	, - u rab	,										ustody S		
4.) Mapy Codes: DW = Drinking Water, GW = Groundwater, SW = Surface	-	- · ·					_		Waste, C) = Oil, I	r = Pitte	r, P = V	Vipe, V -	- Urie	a, P = 1	Pecal, N	i – Nau	-		YES Cooler	NO Temp:	<u>}</u>
Sample Analysis Requested: Analytical method requested (i.e. 2260B, 601 Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodik	-	-						-	ate, lf cu	proter	rative is	addod	n laure f	field M	lenk						<u> </u>	

6954 Cornell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company:

Ohio Environmental Protection

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO 2195 Front Street

Logan, Ohio 43138

Contact:

Scott Bergreen

Project:

Pine View Plating

Report Date: July 28, 2005

Page 1 of 2

Client Sample ID:

Sample ID:

PVP Tote I 141444001

Matrix: Collect Date: Waste Water 21-JUL-05 12:55

22-JUL-05

Project:

Client Desc.:

OHEPA GSE072105-HW

Client ID: OHEPA002

Receive Date:

	Collector:	Client									·
Parameter	Qualifier	Result	DL	RL	Units	DF	Ans	lystDate	Time	Batch	Method
ICP Analysis							•				
TCLP Metals by 60	10 Liquids										
Barium	<u>•</u>	1,74	0.100	1.00	mg/L	100	KT	07/27/05	1812	446473	1
Lead	U	ND	5.80	10.0	mg/L	100					
Scienium	U	ND	4.00	8.00	mg/L	100					
Silver	3	1.60	0.600	2.50	mg/L	100					
Amenic	U	ND	27.0	100	mg/L	1000	KT	07/27/05	1748	446473	2
Cadmium	U	ND	4.00	10.0	mg/L	1000					
Chromium		92300	16.0	50.0	mg/L	2000	KT	07/28/05	1001	446473	3

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
SW846 1311	SW846 1311 Metals TCLP Leaching Liquid	ASD	07/26/05	1110	446181
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/05	1600	446472

The following Analytical Methods were performed

Method	Description	Analyst Comments	
1	SW846 6010B		
2	SW846 6010B		
3	SW846 6010B		

Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- Indicates the target analyte was analyzed for but not detected above the MDL.
- Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Comell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Ohio Environmental Protection Company:

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO 2195 Front Street

Logan, Ohio 43138

Contact:

Scott Bergreen

Ртојест:

Pine View Plating

Report Date: July 28, 2005

Page

Client Sample ID: Sample ID:

PVP Tote 2

141444002 Waste Water

21-JUL-05 13:05

Project: Client ID: OHEPA GSE072105-HW OHEPA002

Collect Date: Receive Date:

Matrix:

22-JUL-05

Client Desc.:

Collector: Client Parameter. DF Time Batch Method Qualifier RL Units **AnalystDate** Result DL **ICP Analysis** TCLP Metals by 6010 Liquids 07/27/05 1819 446473 0.100 100 KT 1 Barium 2.26 1.00 mg/L 5.80 100 Lead ND 10.0 mg/L mg/L 100 Sclenium U ND 4.00 8.00 Silver j 1.54 0.600 2.50 mg/L 100 07/27/05 1752 446473 mg/L 1000 KT Arsenie 100 U ND 27.0 Cadmium υ ND 4.00 10.0 mg/L 1000 mg/L Chromium 82100 8.00 25.0 1000

The following Pren Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
SW846 1311	SW846 1311 Metals TCLP Leaching Liquid	ASD	07/26/05	1110	446181
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/05	1600	446472

The following A	nalytical Methods were performed		
Method	Description	Analyst Comments	
1	SW846 6010B		
2	SW846 KATAR		

Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- < Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- U Indicates the target analyte was analyzed for but not detected above the MDL.
- Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Cornell Road Sulte 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company:

Ohio Environmental Protection

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO 2195 Front Street

Logan, Ohio 43138

Contact:

Scott Bergreen

Project:

Pine View Plating

OHEPA002

Report Date: July 28, 2005

OHEPA GSE072105-HW

Page 1 of 2

Client Sample ID:

PVP Outside Sump

Sample ID:

141444003 Waste Water 21-JUL-05 13:20

Collect Date: Receive Date:

Matrix:

22-JUL-05

Client ID: Client Desc.:

Proiect:

Collector: Client **Parameter** Qualifier Result DL RL Units DF **AnalystDate** Time Batch Method ICP Analysis TCLP Metals by 6010 Liquids Arsenic U ND 0.027 0.100 KT 07/27/05 1733 446473 1 mg/L Barium 0.0516 0.001 0.010 mg/L Cadmium 0.004 0.010 mg/L U ND Chromium 2.13 0.008 0.025 mg/L mg/L Load U ND 0.058 0.100 1 Sclenium 0.040 U ND 0.080 mg/L Silver U 0.006 mg/L ND 0.025

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
SW846 1311	SW846 1311 Metals TCLP Leaching Liquid	ASD	07/26/05	1110	446181
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/05	1600	446472

The following An	alytical Methods were perfe	ormed
Method	Description	Analyst Comments

The Qualifiers in this report are defined as follows:

SW846 6010B

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- E Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- U Indicates the target analyte was analyzed for but not detected above the MDL.
- Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Comell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Сотралу:

Ohio Environmental Protection

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO 2195 Front Street

Logan, Ohio 43138

Contact:

Scott Bergreen

Project:

Pine View Plating

OHEPA002

Report Date: July 28, 2005

OHEPA GSE072105-HW

Page 1 of 2

Client Sample ID:

Sample ID:

Collect Date:

Receive Date:

Matrix:

PVP Building Sump

141444004

Waste Water 21-JUL-05 14:35

22-JUL-05

Client ID: Client Desc.:

Project:

	Collector:	Client							
Parameter	Qualifler	Result	DL	RL	Units	DF	AnalystDate	Time Batch	Method
ICP Analysis									
TCLP Metals by 60	10 Liquids								
Amenic	•	0.228	0.027	0.100	mg/L	1	KT 07/27/05	1804 446473	ı
Berrum		0.417	0.001	0.010	mg/L	1			
Cadmium		0.0365	0.004	0.010	mg/L	1			
Lead		0.813	0.058	0.100	mg/L	1			
Silver	Ū	מא	0.006	0.025	mg/L	1			
Chromium		813	0.080	0.250	mg/L	10	KT 07/27/05	1745 446473	2
Selenium	U	ND	0.400	0.800	mg/L	10			

The	following	D	Methods		Formed
	10011DALIDS	ried	MICHOGO	were per	ormea

Method	Description	Analyst	Date	Time	Prep Batch	
SW846 1311	SW846 1311 Metals TCLP Leaching Liquid	ASD	07/26/05	1110	446181	
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/0 5	1600	446472	

The following Application Mathedomes were professional

THE JOHOWING WH	alytical Methods were performed	
Method	Description	Analyst Comments
1	SW846 6010B	
2	SW846 6010B	

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- < Result is less than amount reported.
- Result is greater than amount reported.
- В Target analyte was detected in the sample as well as the associated blank.
- E Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- U Indicates the target analyte was analyzed for but not detected above the MDL.
- Х Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- d the 2:1 depletion requirement was not met for this sample
- h Sample preparation or preservation holding time exceeded.

6954 Cornell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company: Ohio Environmental Protection

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO 2195 Front Street

Contact:

Logan, Ohio 43138

Project:

Scott Bergreen

Pine View Plating

Report Date: July 28, 2005

OHEPA GSE072105-HW OHEPA002

Page 1 of 2

Client Sample ID:

PVP Pond 141444005

Sample ID: Matrix: Collect Date:

Surface Water 21-JUL-05 13:15 Client ID:

Project:

Client Desc.:

Receive Date: 22-JUL-05

	Collector:	Client								
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
ICP Analysis										
3010A/6010 ICP S	can Metals Liquids									
Arsenic	Ū	ND	27.0	100	ug/L	1	KT 07/27/	05 1339	445973	1
Banum		23.5	1.00	10.0	ug/L	1				
Cadmium	ប	ND	4.00	10.0	ug/L)				
Chromium		478	8.00	25.0	ug/L	1				
Lead	U	ND	58.0	100	ug/L	i				
Selenium	U	ND	40.0	80.0	ug/L	1				
Silver	U	ND	6.00	25.0	ug/L	1				

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch	
SW846 3010A	ICP SW846 3010A Prep Liquids	ASD	07/25/05	1605	445972	

THE IDITOMITE VI	implical interiors were performed	
Method	Description	Analyst Comments
	·	
1	SW846 6010B	

Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- U Indicates the target analyte was analyzed for but not detected above the MDL.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Cornell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Ohio Environmental Protection Company:

Agency (DHWM) - SEDO

Ohio EPA, SEDO Address:

2195 Front Street

Logan, Ohio 43138

Contact: Scott Bergreen Project:

Pine View Plating

Report Date: July 28, 2005

OHEPA GSE072105-HW

OHEPA002

of 2 Page 1

Client Sample ID:

PVP Soil 1A

Sample ID: Matrix: Collect Date: Receive Date: 141444006 Misc Solid

21-JUL-05 13:34

22-JUL-05

Client ID: Client Desc.:

Project:

	Collector:	Client									
Parameter	Qualifier	Result	DL	RL	Units	DF	Ans	lyst Date	Time	Batch	Method
ICP Analysis						-					
TCLP Metals by 60	010 Solids										
Arsenic	U	מא	0.027	0.100	mg/L	1	KT	07/27/0	1658	446473	1
Bar um		0.535	0.001	0.010	mg/L	1					
Cadmium		0.0108	0.004	0.010	mg/L	1					
Chromium	J	0.0136	0.008	0.025	mg/L	ı					
Lead	U	ND	0.058	0.100	mg/L	1					
Selenium	U	МD	0.040	0.080	mg/L	1					
Silver	บ	ND	0.006	0.025	mg/L	1					

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch	
SW846 1311	SW846 1311 Metals TCLP Leaching Solids	ASD	07/25/05	1725	446180	
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/05	1600	446472	

	nalytical Methods were performed	
Method	Description	Analyst Comments
·	·	

SW846 6010B

Notes.

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- Indicates the target analyte was analyzed for but not detected above the MDL.
- Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Cornell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company:

Ohio Environmental Protection

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO 2195 Front Street

Logan, Ohio 43138

Contact:

Scott Bergreen

Project:

Pine View Plating

Receive Date:

Matrix:

Report Date: July 28, 2005

OHEPA002

OHEPA GSE072105-HW

Page 1 of 2

Client Sample ID:

Sample ID:

Collect Date:

141444007 Misc Solid

21-JUL-05 13:43 22-JUL-05

PVP Soil 2A

Proiect:

Client ID:

Client Desc.:

	Collector:	Client								
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
ICP Analysis										
TCLP Metals by 60	110 Solids									
Arsenic	υ	ND	0.027	0.100	mg/L	ı	KT 07/27/05	1722	446473	1
Banum		0.377	0.001	0.010	mg/L	i				
Cadmium	υ	ďΩ	0.004	0.010	mg/L	1				
Chromium		0.0474	0.008	0.025	mg/L	J				
Lead	υ	ND	0.058	0.100	mg/L	1				
Selenium	υ	ND	0.040	0.080	mg/L	I				
Silver	υ	ND	0.006	0.025	mg/L	1				

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
SW846 1311	SW846 1311 Metals TCLP Leaching Solids	ASD	07/25/05	1725	446180
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/05	1600	446472

The following Analytical Methods were performed

THE POSTOTION OF THE PERSON OF	Different tricinges were beringing		
Method	Description	Analyst Comments	-
ì	SW846 6010B		

Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- E Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- Indicates the target analyte was analyzed for but not detected above the MDL.
- Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Cornell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company: Ohio Environmental Protection

Agency (DHWM) - SEDO

Ohio EPA, SEDO Address:

2195 Front Street

Logan, Ohio 43138 Contact: Scott Bergreen

Project:

Pine View Plating

Report Date: July 28, 2005

Page 1 of 2

Client Sample ID:

Sample ID: Matrix:

PVP Ash 1 141444008 Misc Solid 21-JUL-05 14:16

Collect Date: Receive Date:

22-JUL-05

Project:

OHEPA GSE072105-HW

Client ID: OHEPA002

Client Desc.:

	Collector:	Client								
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
ICP Analysis										
TCLP Metals by 60	110 Solids									
Arsenic	U	ND	0.027	0.100	mg/L	1	KT 07/27/05	1725	446473	l
Barium		0.207	0.001	0.010	mg/L	1				
Cadmium	U	ND	0.004	0.010	mg/L	1				
Chromium		20.2	0.008	0.025	mg/L	l				
Lead	บ	ND	0.058	0.100	mg/L					
Sclenium	J	0.0507	0.040	0.080	mg/L	1				
Silver	U	ND	0.006	0.025	mg/L	I				

The following Press Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch	
SW846 1311	SW846 1311 Metals TCLP Leaching Solids	ASD	07/25/05	1725	446180	
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/05	1600	446472	

The following A	nalytical Methods were performed	
Method	Description	Analyst Comments
1	CIVEAS SOUDD	

· Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- < Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank. В
- Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- Indicates the target analyte was analyzed for but not detected above the MDL.
- Х Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Cornell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company:

Ohio Environmental Protection

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO

2195 Front Street

Contact:

Logan, Ohio 43138 Scott Bergreen

Project:

Pine View Plating

OHEPA002

Report Date: July 28, 2005

OHEPA GSE072105-HW

Page 1 of 2

Client Sample ID: Sample ID:

Matrix:

Collect Date:

Receive Date:

PVP Ash 2

141444009 Misc Solid

21-JUL-05 14:23

22-JUL-05

Client Desc.:

Project: Client ID:

Collector: Client Parameter Qualifler Result DL RL Units AnalystDate Time Batch Method **ICP Analysis** TCLP Metals by 6010 Solids 07/27/05 1729 446473 1 Arsenic υ ND 0.027 0.100 mg/L Barium 0.758 0.010 0.001 mg/L Cadmium 0.004 0.010 ND mg/L Chromium U ND 800.0 0.025 mg/L 1 Lead 0.242 0.058 0.100 mg/L Selenium U 0.080 ND 0.040 mg/L 1 U Silver ND 0.006 0.025 mg/L

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
SW846 1311	SW846 1311 Metals TCLP Leaching Solids	ASD	07/25/05	1725	446180
SW846 3010A	Metals Leachate Digestion SW846 3010A	ASD	07/26/05	1600	446472

I HE TOHOMINE WITH	uyucai Memodi were periorme	<u> </u>
Method	Description	Analyst Comments
1	CIVEAC COIDD	

Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- E. Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- U Indicates the target analyte was analyzed for but not detected above the MDL.
- Х Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

6954 Comell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Ohio Environmental Protection Company:

Agency (DHWM) - SEDO

Ohio EPA, SEDO Address:

2195 Front Street

Logan, Ohio 43138

Contact: Scott Bergreen

Project:

Pine View Plating

Client Sample ID: Sample ID:

Matrix:

Collect Date:

Receive Date: Collector:

21-JUL-05 13:40 22-JUL-05

PVP Soil 1B

141444010

Solid

Client

Report Date: July 28, 2005

Page 1 of 2

OHEPA GSE072105-HW Project:

Client ID: OHEPA002

Client Desc.:

	Moisture:	31.6%								
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Metho
CP Analysis		•								
6010/3050 ICP SC	'AN Metals Soil									
Arsenic		20200	3690	12700	ug/kg	1	KT 07/27/0	5 1249	446178	1
Barium		126000	127	1910	ug/kg	1				
Cadmium		2390	763	1270	ug/kg	1				
Chromium		2770000	1270	5090	ug/kg	ı				
Lead		169000	6360	12700	ug/kg	1				
Selenium		17100	2800	12700	ug/kg	1				
Silver	U	ND	763	3180	ug/kg	1				

The following Prep Methods were performed

Method	Description	Analyst	Date	Tlme	Prep Batch	
SW846 3050B	SW846 3050BS Prep Solids	ASD	07/26/05	0915	446177	

THE TOTIONING Y	nalytical Methods were performed	
Method	Description	Analyst Comments
1	SW846 6010B	

Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- Indicates the target analyte was analyzed for but not detected above the MDL.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.

6954 Comell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company:

Ohio Environmental Protection

Agency (DHWM) - SEDO

Address:

Ohio EPA, SEDO

2195 Front Street Logan, Ohio 43138

Contact:

Scott Bergreen

Project:

Pine View Plating

Page 1 of 2

Report Date: July 28, 2005

OHEPA002

OHEPA GSE072105-HW

Client Sample ID: Sample ID:

PVP Soil 2B 141444011

Solid

Matrix: Collect Date: Receive Date:

21-JUL-05 13:46

Collector:

22-JUL-05 Client

Client Desc.:

Project: Client ID:

Moisture: 10%

1-10131010.	1970								
Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
AN Metals Soil									
	13200	2610	9020	ug/kg	1	KT 07/27/05	1304	446178	1
	76100	90.2	1350		ı				
U	ND	541	902		1				
	226000	902	3610		ı				
	18700	4510	9020 .		1				
	12600	1980	9020	ug/kg	1				
U	ND	541	2250	ug/kg	1				
Methods were perfo	rmed								
Description			Analyst	Date	Time	Prep Batch			
SW846 3050E	SS Prep Solids		ASD	07/26/05	0915	446177			
ytical Methods were	performed								
Description				Analyst Comm	ents				
	4N Metals Soil U Methods were performers Description SW846 3050E	Qualifier Result AN Metals Soil 13200 76100 U ND 226000 18700 12600 U ND Methods were performed Description SW846 3050BS Prep Solids ytical Methods were performed	Qualifier Result DL	AN Metals Soil I 3200 2610 9020 76100 90.2 1350 1350 1370 9020 9020 9020 9020 9020 9020 3610 18700 9020 12600 1980 9020 12600 1980 9020 12600 9020 12600 1980 9020 12600 1980 9020 12600 9020 9	Qualifier Result DL RL Units	Qualifier Result DL RL Units DF	Qualifier Result DL RL Units DF Analyst Date	Company Comp	Qualifier Result DL RL Units DF AnalystDate Time Batch

Notes:

1

The Qualifiers in this report are defined as follows:

SW846 6010B

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- Indicates the target analyte was analyzed for but not detected above the MDL.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.

6954 Cornell Road Suite 300 Cincinnati OH 45242 - (513) 489-2001

Certificate of Analysis

Company: Ohio Environmental Protection

Agency (DHWM) - SEDO

Address: Ohio EPA, SEDO

2195 Front Street

Logan Ohio 43138

Contact: Scott Bergreen Project: Pine View Plating Report Date: July 28, 2005

OHEPA002

OHEPA GSE072105-HW

Page 1 of 2

Client Sample ID:

Sample ID:

PVP Soil BKG. 141444012

Solid

Collect Date: 21-JUL-05 13:58 Receive Date: 22-JUL-05

Collector: Moisture:

Matrix:

Client

Client ID: Client Desc.:

Project:

	MOISILIE.	8.34%									
Parameter	Qualifier	Result	DL	RL	Units	DF	Ana	lystDate	Time	Batch	Method
ICP Analysis								-			
6010/3050 ICP SC	AN Metals Soil										
Arsenic		17300	2880	9920	ug/kg	1	KT	07/27/05	1308	446178	1
Barium		114000	99.2	1490	ug/kg	1					
Cadmium	j	743	595	992	ug/kg	I					
Chromium		15400	992	3970	ug/kg	ı					
Lead		23900	4960	9920	ug/kg	1					
Selenium		14000	2180	9920	ug/kg	1					
Silver	U	ND	595	2480	ug/kg	1					

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
SW846 3050B	SW846 3050BS Prep Solids	ASD	07/26/05	0915	446177

The following A	analytical Methods were performed	
Method	Description	Analyst Comments
1	SW846 6010B	

Notes:

The Qualifiers in this report are defined as follows:

- Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- Е Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded.
- The result was greater than the MDL, but less than the RL and is an estimated value. Values below a CRDL are also flagged.
- U Indicates the target analyte was analyzed for but not detected above the MDL.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your Project Manager for details.
- the 2:1 depletion requirement was not met for this sample
- Sample preparation or preservation holding time exceeded.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.